
www.manaraa.com

Design and analysis of distributed load management: Mobile agent
based probabilistic model and fuzzy integrated model

Moazam Ali1 & Susmit Bagchi1

Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In large-scale distributed systems, performing load monitoring and load balancing is a challenging task in terms of load
management. In order to enhance the overall system performance, we have developed and implemented two different models
for large-scale distributed load management. The mobile agent-based system is based on a probabilistic normed estimation
model. This model uses mobile agents for collecting the instantaneous status of currently available node resources autonomously.
The mobile agent is goal oriented and consumes less network and system resources, which is ideal for load monitoring for large-
scale distributed systems. Moreover, we have proposed an integrated load balancing and monitoring model for distributed
computing systems employing type-1 fuzzy logic. Furthermore, we have proposed a smooth and composite fuzzy membership
function in order to model fine-grained load information in a system. In this paper, a detailed software architectural design for
mobile agent based load monitoring system as well as the fuzzy-based load balancing approach are presented. The experimental
evaluation is presented to compare the behavior and performance of the mobile agent-based probabilistic model and fuzzy
integrated model under different load conditions. A detail comparative analysis is presented for the mobile agent-based proba-
bilistic model and fuzzy integratedmodel to show the performance and efficiency of eachmodel. In this paper, we have computed
cross-correlation to find the relation between our proposed models (FIM and MABMS).

Keywords Distributed systems .Mobile agents . Loadmonitoring . Resource utilization . Cloud computing

1 Introduction

Load management is challenging in large-scale distributed
systems such as grid, cloud and enterprise computing. The
reason is these computing environments are heterogeneous
and scattered geographically [1]. In large-scale distributed
systems improving the performance and better utilization of
shared resources depend upon the proper load balancing and
load monitoring mechanisms [2, 3]. The load monitoring
mechanism plays a very important role in identifying the cur-
rently available resource status of a node to avoid underloaded
or overloaded conditions [4]. Without load monitoring, it is
difficult to employ load balancing approaches to distributed
systems. It is highly challenging for a system administrator to
efficiently monitor system load due to dynamic load manage-
ment in highly scalable computing environments [5].

Moreover, load balancing algorithms are used to balance the
overall workload from over-loaded nodes to under-loaded
nodes to ensure system-wide optimum performance.
Therefore, a mechanism is required to overcome these prob-
lems for determining the dynamics of the resource availability
of nodes in distributed systems. In distributed computing, var-
ious approaches have been proposed for load balancing. The
application of fuzzy logic in designing load balancing algo-
rithms is an efficient load balancing approach [6, 7]. Fuzzy
logic is composed of fuzzy sets and rules depending upon
non-crisp fuzzy sets to model and make decisions based on
uncertainties [8]. Furthermore, mobile agents are used to au-
tonomously manage, design, implement and maintain distrib-
uted systems [9, 10]. Mobile agents are autonomous software
entities having the ability to migrate through the network from
node to node [11–13]. The basic characteristics of mobile
agents are autonomy in behavior, social interaction, reactive
to its environmental changes and goal driven execution [14].
A mobile agent created in one node can transport its Bcode^
and Bstate^ to another node in the network, where it continues
its execution [15–17]. The function of Bcode^ is to start exe-
cution and the Bstate^ determines the actions of a mobile agent

* Susmit Bagchi
profsbagchi@gmail.com

1 Department of Aerospace and Software Engineering (Informatics),
Gyeongsang National University, Jinju 660701, South Korea

https://doi.org/10.1007/s10489-019-01454-z
Applied Intelligence (2019) 49:3464–3489

#
Published online: 13 April 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-019-01454-z&domain=pdf
mailto:profsbagchi@gmail.com

www.manaraa.com

in the destination node. Thus, integrating fuzzy logic with a
mobile agent is an attractive approach for load monitoring and
load balancing in large-scale distributed systems.

1.1 Motivation

In order to achieve better performance and proper utilization of
the currently available resources load balancing and load moni-
toring approaches are employed in distributed systems [18]. The
researcher have taken into account a number of approaches for
load monitoring and load balancing in distributed systems [6–8,
11, 19]. Load balancing and monitoring approaches are used to
minimize the processingworkload on a particular nodewill result
in enhancing the overall system performance and efficiency. To
monitor the shared resources and balance the processing work-
load of large-scale distributed systems such as grid, cluster and
cloud have focused on better utilization of resources [20–22].
However, in large-scale distributed systems load monitoring
and load balancing approaches have received less attention in
terms of decreasing intercommunication, time complexity, auton-
omous and accuracy of decision-making. On the contrary, we
argue that the mobile agent-based load monitoring approaches
have several advantages such as [22, 23], (a) Reduced network
load, (b) Network delay resolve, (c) Dynamic adaptation, (d)
Fault tolerance and, (e) Goal-driven behavior. We have also pre-
sented a hybrid architecture for load monitoring and balancing
employing fuzzy logic as well as mobile agents. The advantages
of our proposed hybrid architecture are intelligent monitoring,
accurate decision making, low response time and high
throughput.

In this paper, we present the design, implementation, and
evaluation of mobile agents based loadmonitoring as well as a
fuzzy integrated model in a distributed system environment.
The process load estimation is computed by employing a joint
probability model and norm function, which is computation-
ally inexpensive. Moreover, the decision-making process is
computed by the fuzzy logic decision module to increase the
efficiency and performance of the overall system.

The contributions made in this paper are as follows.

& Designing an autonomous load monitoring model using
mobile agents based on the probabilistic norm.

& Updating real-time load information to monitoring node
for decision making based on time intervals.

& Adaptive decision making by mobile agents depending on
the varying status of a node.

& Type-1 fuzzy logic and mobile agent based integrated
model design.

& Comparative analysis between the mobile agent model
and integrated agent-fuzzy hybrid model.

Rest of the paper is organized as follows. Section 2 presents
related work. Section 3 illustrates designing monitoring agent.

Section 4 presents designing fuzzy load balancer. Section 5 pre-
sentsmonitoring and decision algorithms. Section 6 describes the
implementation environment. Section 7 represents experimental
evaluations. Section 8 presents a comparative analysis of our
proposed algorithms with each other and, with other contempo-
rary designs. Lastly, Section 9 concludes the paper.

2 Related work

There are various approaches available for load monitoring
and load balancing in distributed systems. In general, to per-
form load monitoring and load balancing in large-scale dis-
tributed systems require a considerable amount of computa-
tional resources [2]. The taxonomy of various agent-based
monitoring models is illustrated in Fig. 1. Iosup, et al. pro-
posed a monitoring architecture for control of grids, which is
known as Toytle [24]. The core issues addressed by Toytle are
grid-awareness, scalability and communication standards.
Toytle architecture inherits Global Grid Forum Grid
Monitoring Architecture (GGFGMA) guidelines [24]. This
architecture consists of three layers such as a Distributed core
layer, a Hierarchical connection layer, and Local monitor lay-
er. This mechanism ensures that the hierarchical connection
yields a highly scalable approach, where the data can be col-
lected from different and large-scale distributed systems with
some degree of fault tolerance. Pivot Tracing is a monitoring
framework for distributed systems that addresses two impor-
tant limitations [25]. The first limitation is that most of the
monitoring system information is recorded a priori. The sec-
ond limitation is that the information is stored in a component
or machine centric way which makes it very difficult to cor-
relate events that cross these boundaries. In Pivot tracing ap-
proach dynamic instrumentation combine with relational op-
erator gives users run-time ability to define arbitrary metrics
and to select, filter and group-based meaningful events for
other parts in the system. Dan Gunter et al. have proposed a
very lightweight instrumentation system for dynamic moni-
toring of high performance distributed applications
(DMHPDA) [26]. The system is used to collect and aggregate
detailed monitoring information from distributed applications.
The system consists of four main monitoring components
such as application instrumentation, activation service, moni-
toring event receiver, and archive feeder. Moreover, to achieve
high-performance none of the above components can cause
the pipeline to block while processing the data. InteMon is
designed for monitoring and data mining in large clusters
[27]. InteMon can monitor more than 100 nodes of a data
center. This approach uses the Simple Network Management
Protocol (SNMP) and, MySQL database is used for storing
monitored data. The advantage of this approach is the ability
to automatically analyze the monitored data in real time and to
alert users for any anomalies [27]. In recent years, mobile

Design and analysis of distributed load management: Mobile agent based probabilistic model and fuzzy... 3465

www.manaraa.com

agents are emerged as a promising technology for load mon-
itoring and load balancing in large-scale distributed systems.
Mobile agents have the ability to migrate from node to node in
a connected network to obtain updated status information.
Mobile agents are autonomous which means that a user is
no longer needed to allocate mobile agents to nodes for mi-
gration. The researchers have proposed aMobile Agent-Based
Server Resource Monitoring System (MABSRMS) based on
Mobile-C library [28]. In MABSRMS, mobile agents call a
low-level function to monitor server resources effectively and

efficiently. Monitoring algorithms are easily and quickly de-
ployable on part or all of the monitoring nodes. In
MABSRMS there is no backup mechanism specified for the
servers. The intercommunication between the nodes and the
server would enhance when a large number of nodes are
interacting with a single server for load monitoring.
Distributed Architecture for Monitoring and Diagnosis
(DIAMOND) is a hierarchical and distributed cooperating
agent model designed for distributed monitoring and diagno-
sis system [3]. The hierarchical model gives the advantage to

Toytle

Monitoring agent
models

Pivot Tracing DMHPDA InteMon MABSRMS DIAMOND LISA

Fault
tolerant &
Scalable

Efficient &
Cooperate

Fault tolerant
&

Autonomous

Automa�c
data analysis,
fault tolerant

& autonomous

Efficient
resource

management
&

Autonomous

Coopera�ve
& Flexible

Fault
tolerant,

Coopera�v
e & Flexible

Behavioral proper�es

PBM

Efficient
resource

management
& Flexible

Fig. 1 Taxonomy of various agent-based monitoring systems

Fig. 2 Large scale distributed system and mobile agent model

M. Ali and S. Bagchi3466

www.manaraa.com

predict the behavior of the system providing high performance
and flexibility. The component diagnosis and monitoring
(CDM) systems are modular to guarantee flexibility to alter
when needed in case of expansion of any module without any
new line of code [3]. Localhost Information Service Agent
(LISA) is a lightweight dynamic service capable of providing
application monitoring, configuring system parameter and op-
timizing distributed applications [29]. LISA framework is in-
dependent and it can be deployed on any node architecture or
operating systems. The framework (core system) is based on
modules responsible for managing and monitoring other mod-
ules as well as to continuously monitor itself and detect any
potential problems and take remedial measures for a solution.
Precedence Based Monitoring (PBM) algorithm is proposed

for load monitoring in cloud architecture to manage resources
based on time, event and precedence [30]. Reduced Penalty
Class Algorithm (RPCA) is used for negotiation and service
level agreement between the centralized node of cloud and the
consumers. In their proposed model, if the user request is not
fulfilled by a particular cloud, then the agent of the current
cloud migrates the request of the users to a neighboring cloud.

Centralized-But-Distributed fuzzy dynamic load balancing
model is used to deal with inaccurate load information, mak-
ing load distribution decision and, maintaining overall system
stability [6]. This model specifies how, when and by whom
load balancing mechanism is implemented. To collect the cur-
rently available status of a node, load balancer node broadcast
request message to all available nodes for determining their

DCM RCM DSM

SBMWait random

DRMMLMMDM

NIMMAM

DB

Node info

CNNM

Agent Monitoring Module

Agent Decision Module

Agent Migration Module

Fig. 3 Mobile agent design
architecture

SBM

CMFARM

MAM

COM

Fuzzy Decision Module

Fig. 4 Fuzzy based decision
architecture module

Design and analysis of distributed load management: Mobile agent based probabilistic model and fuzzy... 3467

www.manaraa.com

current status. This model removes the single point of failure
because each node can act as the load balancer node on a
temporary basis at the cost of high intercommunication due
to the broadcasting request message to all the connected
nodes. Intelligent fuzzy grouping system (IFGS) model is de-
signed to characterize uncertainties in the decision-making
process and to decrease the messaging overhead by dividing
the servers into different groups [8]. The IFGS model consists
of five components: (a) load monitor, (b) load-collector, (c)
fuzzy-analyzer, (d) load-indicator and, (e) load-strategy. To
reduce communication overhead the network is subdivided
into a small group of nodes by sending a message to its re-
spective designated representative (DR). In the normal opera-
tions, load migration will take place if a node is leaving a
subgroup. However, abnormal exit or disconnection of a node
in a subgroup loses data with no backup measures. A two-
level fuzzy model is designed for dynamic load balancing in
cloud computing [7]. This model is used to characterize the
uncertainty in a distributed system by employing fuzzy logic.
This model has a hierarchical structure which consists of a
cluster load manager (CRLM) and cloud load manager

(CDLM). This model employs load balancing into two levels.
In level 1, the CDLM will select the appropriate cluster with
better processing power and with minimal queue length by
employing fuzzy logic. In level 2, CRLM will select the ap-
propriate node in a particular cluster to assign a task based on
CPU load and the queue length of that node by using fuzzy
logic. The researcher has proposed a dynamic load balancing
model based on fuzzy logic for grid computing services [31].
This model is designed by using a fuzzy logic inference

Fig. 5 Composite fuzzy membership function

Data types:

double mem, cpuperc, ram_per, cpu_per;

array cpu_load [], array ram_load [];

double v1, v2, v3, d12, d13, d23, vn, v;

Initialization:
mem = null, cpuperc = null, ram_per = 0, cpu_per = 0;

Procedure:
Compute_Node_Status (cpu_load, ram_load) {

mem = get_memory_free ();

cpuperc = get_cpu_free ();

ram_per = compute_free_ram_percentage ();

cpu_per = compute_free_cpu_percentage ();

store (cpu_load [], cpu_per);

store (ram_load [], ram_per);

wait (Random());

v1 = (cpu_load [0] . ram_load[0]);

v2 = (cpu_load [1] . ram_load[1]);

v3 = (cpu_load [2] . ram_load[2]);

d12 = | v1 - v2 |;

d13 = | v1 - v3 |;

d23 = | v2 – v3 |;

vn = min (v1, v2, v3);

v = |min (vn) + ((d12 + d13 + d23) /3)|;

monitoring_decision (v);}

Fig. 6 Pseudo-code representation of monitoring algorithm

Table 1 Fuzzy inference rule-base

RAM

CPU VL L M H VH

VL SAL SAL SAL SCL SCL

L SCL SCL SCL SCL SCL

M SRL LCL LCRL CA CA

H SRL LRL SSL CA SSL

VH SRL LRL SSL SSL SSL

SAL Send_Any_Load, SCL Send_Cpu_Load, SRL Send_Ram_Load,
LCL Light_Cpu_Load, LRL Light_Ram_Load, LCRL Light_Cpu_
Ram_Load, SSL Stop_Sending_Load, CA Compute_Again

M. Ali and S. Bagchi3468

www.manaraa.com

system which uses specific metrics to collect the uncertainty
of loads and specifies the state of each node per cluster. The
load balancing mechanism is divided into two levels. Level 1:
load balancing is done at the cluster level by a global manager.
In Level 2: load balancing is done at the node level by a local
manager. In this model, the local manager is responsible to

Data types:
String v_history, v_current;

double cpu_load, ram_load;

integer msg_history;

Initialization:
cpu_load = 0, ram_load = 0, msg_history = 0;

Procedure:
//for zone_1:

monitoring_decision(){

if (cpu_load > 0.85 ˅ ram_load > 0.85){

migrate (Agent);

}elseif (v > 0 ˄ v ≤ 0.24){

v_current = zone_1;

if ((v_history == zone_1) ˅ (v_history == null) ˄ (v_current == zone_1)){

send_msg (monitoring_node, <load_any, node_id>);

v_history = v_current;

migrate (Agent);}

if (v_history == zone_2 ˄ v_current == zone_1){

compute (cpu_load, ram_load);

if (cpu_load > ram_load){

send_msg (monitoring_node, <load_light_cpu, node_id>);

v_history = v_current;

migrate (Agent);}

}else {

send_msg (monitoring_node, <load_light_ram, node_id>);

v_history = v_current;

migrate (Agent);}

if (v_history == zone_3 ˄ v_current == zone_1){

send_msg (monitoring_node, <load_light_cpu, node_id>);

v_history = v_current;

migrate (Agent);}}}

Fig. 7 Pseudocode representation of decision algorithm for zone_1

Ini�aliza�on

Monitoring_decision

Cpu_load>0.85 or Ram_load

Migrate_agent

V > 0 And V <= 0.24

V_current==zone_1

(v_history==zone_1) or (v_history==null and v_current==zone_1)

Send_msg (load_any,
node_id)

V_history = v_current

Migrate_agent v_history==zone_2 and v_current==zone_1

Compute (cpu_load, ram_load)

Compute (zone_2
or zone_3)

Cpu_load > ram_load

Send_msg
(load_light_cpu, node_id)

V_history = v_current

Migrate_agent
Send_msg

(load_light_ram, node_id)
V_history = v_current

v_history==zone_3 and v_current==zone_1

Send_msg
(load_light_cpu_ram,

node_id)
V_history = v_current

Migrate_agent

True

False

True

False

False

True

True

False

False

True

True

Fig. 8 Flow diagram of decision algorithm for zone_1

//for zone 2

elseif (v > 0.24 ˄ v ≤ 0.48){

v_current = zone_2;

if (v_history == zone_1 ˄ v_current == zone_2){

compute (cpu_load, ram_load);

if (cpu_load > ram_load){

send_msg (monitoring_node, <load_light_cpu, node_id>);

v_history = v_current;

migrate (Agent);}

else {

send_msg (monitoring_node, <load_light_ram, node_id>);

v_history = v_current;

migrate (Agent);}}

if ((v_history == zone_2) ˅ (v_history == null) ˄ (v_current == zone_2)){

if (msg_history ≥ 3){

msg_history = 0;

compute (cpu_load, ram_load);

if (cpu_load > ram_load){

send_msg (monitoring_node, <load_ram, node_id>);

v_history = v_current;

migrate (Agent);

} else {
send_msg (monitoring_node, <load_cpu, node_id>);

v_history = v_current;

migrate (Agent);}

} else {
send_msg (monitoring_node, <load_light_cpu_ram, node_id>);

v_history = v_current;

msg_history ++;

migrate (Agent);}}

if (v_history == zone_3 ˄ v_current == zone_2){

v_history = v_current;

migrate (Agent);}

}

Fig. 9 Pseudocode representation of decision algorithm for zone_2

Fig. 10 Flow diagram of decision algorithm for zone_2

Design and analysis of distributed load management: Mobile agent based probabilistic model and fuzzy... 3469

www.manaraa.com

evaluate the state of the nodes inside a specific cluster as well
as to perform local load balancing. The global manager will
communicate with the local manager of each cluster to obtain
the status of all the nodes within a cluster. The learning by
observation agents (LbO model) observe the behavior per-
formed by an expert and learn to correctly perform that be-
havior [32]. In this model, the agent observation of the expert
is based on the quality and coverage of the behavior. LbO
model uses two approaches for observation acquisition. The
first one is mixed-initiative observation acquisition, while the
second one is delayed observation acquisition [32]. Weighted
wavelet support vector machine (WWSVM) model is used to
predict the host load sequence in the cloud data center, which
is helpful for resource scheduling to minimize energy con-
sumption [33]. This model combines the advantages of wave-
let transform and support vector machine in order to
increase the accuracy of load prediction in cloud data
center [33]. Moreover, to find the optimal combination
of the parameters, the researchers have proposed a pa-
rameter optimization algorithm which is based on parti-
cle swarm optimization (PSO).

3 Designing monitoring agent

In this section, we have presented a high-level conceptual
schematic diagram of our proposed mobile agent monitoring
system as illustrated in Fig. 2. It is presented in Fig. 2, that our
schematic diagram is consists of four groups of heterogeneous
computing nodes. The agent body is consisting of three main
modules such as (a) Agent Monitoring Module (AMM), (b)
Agent Decision Module (ADM) and, (c) Agent Migration
Module (AMMO). First, the AMM module collects the cur-
rent status information of the available resources in random
time intervals to obtain different samples. The purpose of
collecting different samples is to compare the status of re-
sources at randomized time intervals. The ADMmodule com-
putes the collected samples of data for decision making at
multiple levels. The AMMO module migrate the agent to
appropriate nodes in distributed systems if a migration deci-
sion is made autonomously. The background processes or
daemon processes are the periodic or non-terminable pro-
grams. The background processes have significance in man-
aging system performance. In this paper, we are referring
RAM and CPU as the main available system resources in a
node for computational purposes.

Data types:

double mem, cpuperc, ram_per, cpu_per, condition_cpu, condition_ram, z;

array cpu_load [], array ram_load [];

double cpu_very_lightly_loaded, cpu_lightly_loaded, cpu_moderatly_loaded, cpu_highly_loaded, cpu_very_highly_loaded,

ram_very_lightly_loaded, ram _lightly_loaded, ram _moderatly_loaded, ram _highly_loaded, ram _very_highly_loaded, u_output, output_rule,

data_ram, data_cpu;

Initialization:
mem = null, cpuperc = null, ram_per = 0, cpu_per = 0;

Procedure:
Compute_Node_Status(){

mem = get_memory_free();

cpuperc = get_cpu_free();

ram_per = compute_free_ram_percentage();

cpu_per = compute_free_cpu_percentage();

store (cpu_load [], cpu_per);

store (ram_load [], ram_per);}

map_membership_function (cpu, ram);

Compute_Membership(){

cpu = new Cpu();

ram = new Ram ();

ram.data_ram = condition_ram;

ram_very_lightly_loaded = ram.very_lightly_loaded ();

ram_lightly_loaded = ram.lightly_loaded ();

ram_moderatly_loaded = ram.moderatly_loaded ();

ram_highly_loaded = ram.highly_loaded ();

ram_very_highly_loaded = ram.very_highly_loaded ();

cpu.data_cpu = condition_cpu;

cpu_very_lightly_loaded = cpu.very_lightly_loaded ();

cpu _lightly_loaded = cpu.lightly_loaded ();

cpu _moderatly_loaded = cpu.moderatly_loaded ();

cpu _highly_loaded = cpu.highly_loaded ();

cpu _very_highly_loaded = cpu.very_highly_loaded ();}

Apply_rule();

Compute_output(){

z = 0;

stat1 = 0;

stat2 = 0;

for (int i = 0; i < 25; i++){

stat1 += output_rule[i] * u_output[i];

stat2 += output_rule[i];}

z = stat1/stat2;}

Find_Min (double a, double b){

double result;

List < Double > list = new ArrayList <Double> (2);

list.add(a);

list.add(b);

Collection.sort(list);

result = Collection.min(list);

return result;}

RunFuzzy(){

Compute_Membership();

Apply_rule();

Compute_Output();}

Fig. 13 Pseudocode representation of Fuzzy decision algorithmFig. 12 Flow diagram of decision algorithm for zone_3

//for zone 3:

elseif (v > 0.48 ˄ v ≤ 0.72){

v_current = zone_3;

if (v_history == zone_1 ˄ v_current == zone_3){

wait (Random());

Compute_Node_Status();

monitoring_decision();

}

if (v_history == zone_2 ˄ v_current == zone_3){

v_history = v_current;

migrate (Agent);}

if ((v_history == zone_3) ˅ (v_history == null) ˄ (v_current == zone_3)){

send_msg (monitoring_node, <stop_sending_load, node_id>);

v_history = v_current;

migrate (Agent);

}}

Fig. 11 Pseudocode representation of decision algorithm for zone_3

M. Ali and S. Bagchi3470

www.manaraa.com

The internal architectural design of our proposed mobile
agent-based monitoring system is illustrated in Fig. 3. In this
section, we will be explaining the detail working of each
sub-module of our proposed agent monitoring system. The
AMM module consists of sub-modules as, Data Collection
Module (DCM), Resource Compute Module (RCM), Data
Sampling Module (DSM) and, Storage Buffer Module
(SBM). The DCM module is used to collect the available
status of current resources, compute the total number of
processes that are currently holding the resources and sends
this information to the next sub-module (RCM). The RCM
module computes the received data and converts it into a
percentage, which helps to efficiently determine the exact
usage of available resources in the random time intervals.
The DSM module selects different samples randomly and
stores it in buffer storage, however, this process keeps going
until a specified amount of sampling. The purpose of using a
randomized waiting time is to make sure that the samples
collected by the DSM module are distributed over time with
relative uniformity. To avoid the effects of rapidly transiting
processes in a system, the randomization of waiting time is
employed. The SBM module is used to store all the sam-
pling results which are collected by the sampling module.
The sampling module stores the status information of both
the RAM and CPU, then wait for the random amount of
time to continue sample collection. The ADM module con-
sists of sub-modules as, Data Retrieval Module (DRM),
Monitoring Logic Module (MLM) and, Monitoring
Decision Module (MDM). The DRM module retrieves
stored data instantaneously from SBM module and forward
it to MLM module for further processing.

The MLMmodule computes the joint probability variation
of processing load in a node based on sampled data. The joint
probability is used to calculate two instantaneous events that
are probably occurring at the same time. By taking the joint
probability of the resources, it is easy to make a decision about
the status of a particular node (i.e. heavily loaded or lightly
loaded) based on a suitable norm function. The MLMmodule
will categorize the status of system load according to the em-
bedded logic to achieve the desired goal. The MDM is used to
make a decision either to migrate the agent or to re-compute
the status of resources. The MDM used joint probability for
decision making such that, if the joint probability of a node is
greater than a threshold value, the MDM causes the agent to
migrate otherwise will send the agent to RCM module for re-
computing the status information. The AMMmodule consists
of sub-module which are, Node Info Module (NIM),
Computing Next Node Module (CNNM) and, Migrate Agent
Module (MAM). The NIM module frequently checking the
available nodes to determine the online and offline systems, to
ensure reliability as well as increase the overall system perfor-
mance by updating its database. The CNNM module select
appropriate nodes based on a criteria such as, (a) select such a
node with high level of processing and computing resources,
(b) select a node with enough free available resources, (c)
select nearest or adjacent node and, (d) a node with fast and
less congested network link. The MAM module is used to
migrate the agent to the next node for computing the current
status of the node. The MAM module migrates the agent for
computing the current status of the next node. This module
uses two inputs for processing such that it received on input
from the MDM module and the other input from CNNM

Ini�aliza�on Compute_Node_Status

Map_membership_func�on Compute_Membership

Apply Rule

Compute_output

Fig. 14 Flow diagram of Fuzzy decision algorithm

Design and analysis of distributed load management: Mobile agent based probabilistic model and fuzzy... 3471

www.manaraa.com

module. The MDM module confirms the migration of agent,
while the CNNM module will specify the node for migration.

3.1 ADM and fuzzy module hybrid

In our proposed agent-based monitoringmodel, ADMmodule
is used to compute the collected data for making multiple

levels of decisions. In order to increase the performance and
accuracy of our monitoring model, we have removed the
ADM module and added Fuzzy Decision Module (FDM).
The Fuzzy Decision Module is illustrated in Fig. 4.

Fuzzy logic decision module is used to collect fine-grained
information of nodes for decision-making and loadmonitoring in
our proposed model. The FDMmodule consists of sub-modules

Table 2 Platform specifications of the runtime environment and system configuration

Nodes Specification Runtime Environment

Operating System Software

Node 1 Intel Celeron G1840 CPU 2.80 GHz, RAM: 4 GB, HDD:
128 GB, NIC: Wireless Adaptor

Windows 10 Eclipse 4.6, JADE 4.5.0, JDK 1.8,
CPU Stress and Heavy Load.

Node 2 Intel Core i7–6700 CPU 3.40 GHz, RAM: 8 GB, HDD:
2 TB, NIC: Realtek PCIe Controller

Linux kernel 2.6 Fedora

Node 3 Intel Core i5 3.1GHz, RAM: 3 GB, HDD: 500 GB, NIC:
Realtek PCIe Controller

Windows 10

Node 4 Intel Core 2 Duo E8400 CPU 3.00 GHz, RAM: 3 GB,
HDD: 320 GB, NIC: Realtek PCIe Controller

Windows 7

Monitoring Node Intel Core i7–6700 CPU 3.40 GHz, RAM: 8 GB, HDD:
2 TB, NIC: Realtek PCIe GBE Family Controller

Windows 10

Network Ethernet: 100Mbps LAN Wireless: 100Mbps WAP,
Signal strength: 45% (average)

Fig. 15 Deployment model of mobile agent monitoring

M. Ali and S. Bagchi3472

www.manaraa.com

for retrieving sampling data, Computing Membership Function
(CMF), Apply Rules Module (ARM) and Compute Output
Module (COM) for mobile agent migration. The CMF module
is used to map the retrieved sampled data into appropriate mem-
bership function.We have proposed a smooth fuzzymembership
function for mapping the sample data. The smooth membership
function collects the fine grain information of the currently avail-
able node status. ARM module is used to apply rules to the
membership values, this module is responsible to accurately cat-
egorize the membership values and apply rules accordingly. The
ARM module contains twenty-five different sets of rules. The
COM module retrieves data from ARM module for
defuzzification. Moreover, this module computes data from the
rule base and further process the result for decision-making.

3.2 Agent-based load estimation model

The aim of calculating the joint probability variation of CPU
load and RAM load is to obtain the combined load status of a
node n. In general, the probability based estimation model
computes the uncertainity in system dynamics enabling deci-
sion making to enhance the performance and efficiency of a
system under uncertain conditions [34]. Our estimation model
computes the joint probability of CPU load (Pn(C)) and RAM
load (Pn(R)) variations over time based on discrete samples.
The set of samples represented in this experiment are
consisting of randomly collected statistical datasets within an
estimation time window. The aim of using this procedure is to
reduce enlargement of memory consumption in a node.
Moreover, this set of collected samples are enough to formu-
late probabilistic normed estimation of dynamics of load var-
iations of a node. The reason for using a comparatively lower
number of sampling is to avoid the repetition of the samples at
various intervals generating high data volume. Moreover, this
set of samples are temporarily stored in the history (kept in
RAM) for decision-making purpose. Hence, in our system
effectively more than three samples are taken into consider-
ation for the decision-making process at every instant. Hence,

the computation of the discrete joint probability of variations
of resource load in a timewindow at the node n is given below.

t∈Zþ; t < 4;

℘n tð Þ ¼ Pn Cð Þ t

�
:
�
Pn Rð Þ

���
���
t

� � ð1Þ

The relative triangular distances between the three samples
of discrete joint probabilities are computed as,

a; b∈Zþ;
dn a; bð Þ ¼ j℘n að Þ−℘n bð Þj ð2Þ

The minimum value of joint probabilities of three different
time intervals are computed as,

vn ¼ min dn a; bð Þ : a; b < 4f g ð3Þ

The joint resource load of the corresponding node is com-
puted by employing a norm function as,

‖v‖ ¼ jvn þ avg dn a; bð Þð Þj ð4Þ

The probabilistic norm is the broad generalization of an
ordinary normed linear space representing lengths of elements
within the space in the non-negative range [35].

0

0.2

0.4

0.6

0.8

1

min
1

min
2

min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

sci
manyd

gnirotino
m

dna
daol

Time (min)

Varia�on of individual and joint probabili�es of
cpu/ram load

cpu ram v

Fig. 18 Combined dynamics of CPU and RAM load of mobile agent
monitoring system (ex-set-1)

0

1

2

3

min
1

min
2

min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

Zo
ne

 d
yn

am
ic

s

Time(min)

Snapshot zone dynamics of algorithm

Fig. 16 Zone dynamics of mobile agent monitoring system (ex-set-1)

0

1

2

3

4

5

6

min
1

min
2

min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

Ru
le

 fi
rin

g
de

ns
ity

Time (min)

Snapshot of rule firing density of algorithm

Fig. 17 Rule firing density of mobile agent monitoring system (ex-set-1)

Design and analysis of distributed load management: Mobile agent based probabilistic model and fuzzy... 3473

www.manaraa.com

It is easy to verify that Eq. (4) is a norm because,∀t ∈ Z+, ∣
At ∣ ≥ 0, ∀k ∈ℜ : ∣ kAt ∣ = ∣ k ∣ . ∣ At∣ and, ∣At = a ∣ + ∣
At = b ∣ ≥ ∣ At = a + At = b∣where, At = vn + avg(dn(a, b)) at a
time instant t.

The norm value ‖v‖ of a node is used as an input parameter
for decision making by load monitoring algorithm of the mo-
bile agents.

4 Designing fuzzy load balancer

In our proposed approach fuzzy logic is used for decision
making under uncertainties. In our proposed model, we have
formulated a smooth composite membership function. The
smooth function is able to extract fine-grained information
from the data and able to provide analysis that is flexible
and robust [36, 37]. We have fuzzy integrated logical module
into our agent-based monitoring system to deal with the un-
certainty of dynamic load balancing and decision-making pur-
pose. The composite profile of a fuzzymembership function is
given in Fig. 5.

Our proposed membership function is a composite of two
function sine and cosine for collecting fine-grained information
of node resources. It is periodic in nature because it is repeating
over fix intervals of pi radians. In our rule-based system, we have
two antecedent for CPU and RAM and the linguistic variables
are, very_lightly_loaded, lightly_loaded, moderately_loaded,

highly_loaded and very_highly_loaded. While our consequent
linguistic terms are Send_Any_Load, Send_Cpu_Load,
Send_Ram_Load, Light_Cpu_Load, Light_Ram_Load,
Light_Cpu_Ram_Load, Stop_Sending_Load, Compute_Again.
Fuzzy reasoning (if-then) rules have two basic features. The first
feature is that the rule will partially match the input data to make
an inference. The second feature is that the fuzzy inference sys-
tem will combine all the conclusions of the rules to form a con-
clusion. The rule-based system for our proposed model is illus-
trated in Table 1.

5 Monitoring and decision algorithms

The algorithm is designed based on the execution logic of
mobile agents. We have employed a mobile agent to collect
status information from nodes. The agent is capable to migrate
autonomously based on decision logic. The agent sends re-
sponse messages from target nodes to the monitoring node.
Designing of the monitoring algorithm and decision algorithm
are given below. In our proposed model, we have designed
two different types of decision algorithms named, 1) Agent-
based decision algorithm and, 2) fuzzy based decision algo-
rithm. Agent-based decision algorithm uses a mobile agent to
collect the status information autonomously and carried out
the decision accordingly. In this model, we used probabilistic
norm for calculating the status information. The fuzzy based

0

1

2

3

4

5
m

in
 1

m
in

 2
m

in
 3

m
in

 4
m

in
 5

m
in

 6
m

in
 7

m
in

 8
m

in
 9

m
in

 1
0

m
in

 1
1

m
in

 1
2

m
in

 1
3

m
in

 1
4

m
in

 1
5

m
in

 1
6

m
in

 1
7

m
in

 1
8

m
in

 1
9

m
in

 2
0

m
in

 2
1

m
in

 2
2

m
in

 2
3

m
in

 2
4

m
in

 2
5

m
in

 2
6

m
in

 2
7

m
in

 2
8

m
in

 2
9

m
in

 3
0

M
ig

ra
�o

n
fr

eq
ue

nc
y

Time (min)

Migra�on frequency distribu�on of agent(under
processing load)

Fig. 19 Migration frequency distribution of agent under cpu_load (ex-set-1)

0

1

2

3

4

min
1

min
2

min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

Zo
ne

 d
yn

am
ic

s

Time (min)

Snapshot of zone dynamics of algorithm

Fig. 20 Zone dynamics of mobile agent monitoring system (ex-set-2)

0

1

2

3

4

5

6

7

8

min
1

min2 min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

Ru
le

 fi
rin

g
de

ns
ity

Time (min)

Snapshot of rule firing density of algorithm

Fig. 21 Rule firing density of mobile agent monitoring system (ex-set-2)

0

0.2

0.4

0.6

0.8

1

min
1

min2 min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

sci
manyd

gnirotino
m

dna
daol Time (min)

Varia�ons of individual and joint probabili�es of cpu/ram
load

cpu ram v

Fig. 22 Combined dynamics of CPU and RAM load of mobile agent
monitoring system (ex-set-2)

M. Ali and S. Bagchi3474

www.manaraa.com

decision algorithm uses fuzzy logic to make a decision based
on the uncertainty of the node status. In this model, we use
smooth membership function, which collects fine-grained in-
formation of node status, thus increasing the accuracy and
overall performance of the system.

5.1 Agent based monitoring algorithm

The monitoring algorithm executes to compute the status of
currently available resources of a node in a specified amount
of time. The pseudocode representation of the monitoring al-
gorithm is presented in Fig. 6. The monitoring algorithm com-
putes the available resources such as cpu_load and ram_load
of a node. The existing cpu_load and ram_load are computed
in terms of percentage (%) to accurately determine the freely
available resources of a node. In order to collect the RAM and
CPU status of a node we have used two functions namely,
get_memory_free () and get_cpu_free (). The returned values
of cpu_load and ram_load are stored in an array for further
processing. To calculate the joint probability values of v1, v2
and, v3 the data in the cpu_load and ram_load are accessed to
compute the product of all the stored instances. The purpose of
calculating joint probability is to determine the variations in
cpu_load and ram_load in order to calculate the combined
load status of a current node. The algorithm is designed to
run and compute the joint probability for at least three

different time instances to efficiently and effectively calculate
the cpu_load and ram_load in random time intervals within an
estimation time window.

The algorithm calculates the joint probabilities of resource
load variations and their relative triangular distances (d12, d13
and, d23). The minimum value of joint probabilities is com-
puted and is stored in variable vn. Finally, the algorithm cal-
culates the final cpu_load and ram_load of a node by follow-
ing the norm function. The computed final value v (i.e. norm
value) is passed as an input parameter to monitoring decision
algorithm.

5.2 Agent based decision algorithms

The function of the decision algorithm is to process the input
data from the monitoring algorithm for decision making. The
input data processing in the decision algorithm is done in three
distinct zones for current system load categorization such as
zone_1, zone_2, and zone_3. Moreover, zone_1 represent the
low load, zone_2 represent the medium load, and zone_3 rep-
resent high load of the current available node. The process of
zone quantization is performed to determine the current load
status of a node for the effective and efficient load monitoring
system. The zone boundaries are set in a scale between 0 and
1, whereas 0 represent the lowest value and 1 is the highest
value. The distribution of zones is based on joint probability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

min
1

min2 min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

sci
manyd

gnirotino
m

dna
daol

Time (min)

Varia�on of individual and joint probabili�es of cpu/ram
load

cpu ram v

Fig. 26 Combined dynamics of CPU and RAM load of mobile agent
monitoring system (ex-set-3)

0

1

2

3

4

5

6

7

8
m

in
 1

m
in

 2
m

in
 3

m
in

 4
m

in
 5

m
in

 6
m

in
 7

m
in

 8
m

in
 9

m
in

 1
0

m
in

 1
1

m
in

 1
2

m
in

 1
3

m
in

 1
4

m
in

 1
5

m
in

 1
6

m
in

 1
7

m
in

 1
8

m
in

 1
9

m
in

 2
0

m
in

 2
1

m
in

 2
2

m
in

 2
3

m
in

 2
4

m
in

 2
5

m
in

 2
6

m
in

 2
7

m
in

 2
8

m
in

 2
9

m
in

 3
0

M
ig

ra
�o

n
fr

eq
ue

nc
y

Time (min)

Migra�on frequency distribu�on of agent(under processing
load)

Fig. 23 Migration frequency distribution of agent under cpu_load and
VOD load (ex-set-2)

0

1

2

3

4

min
1

min2min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

Zo
ne

 d
yn

am
ic

s

Time (min)

Snapshot of zone dynamics of algorithm

Fig. 24 Zone dynamics of mobile agent monitoring system (ex-set-3)

0
1
2
3
4
5
6
7
8

min
1

min2 min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

Ru
le

 fi
rin

g
de

ns
ity

Time (min)

Snapshot of rule firing density of algorithm

Fig. 25 Rule firing density of mobile agent monitoring system (ex-set-3)

Design and analysis of distributed load management: Mobile agent based probabilistic model and fuzzy... 3475

www.manaraa.com

values assigned to each zone. The zone boundaries are heu-
ristically set as, zone _ 1⇒ (v > 0 ∧ v ≤ 0.24),zone _ 2⇒ (v >
0.24 ∧ v ≤ 0.48), and zone _ 3⇒ (v > 0.48 ∧ v ≤ 0.72). We have
divided the decision algorithm into three parts based on the
current status of zones for easy understanding and description.

5.2.1 Decision algorithm for Zone_1

In our proposed decision algorithm there are two important
variables named v_history and v_current. The v_history stores
last updated zone information to capture zone dynamics and
v_current stores current zone status. This will result in chang-
ing the status of v_history to v_current in the next execution
instant. The pseudo code and flow diagram representation of
the decision algorithm for zone_1 is presented in Fig. 7 and
Fig. 8 respectively.

In zone_1, first the monitoring_decision function checks
the cpu_load and ram_load of a node. If any of individual load
estimation is greater than 0.85, then it will result in migration
of agent without sending any message to the monitoring node.
The elseif condition checks the joint probability value to iden-
tify the current zone status of a node and to inform the mon-
itoring node for a particular load migration. The decision al-
gorithm checks the status history (v_history) and, if the history
is Bnull^ or Bzone_1^ then the mobile agent will send a mes-
sage to monitoring node indicating that this node is lightly
loaded enabling to send any processing load to it. Next, the

mobile agent updates the history to zone_1 and will migrate to
the next node. The second condition will check if the
v_history is in zone_2 or not. Accordingly, the algorithm will
compute the cpu_load and ram_load once more. If the
cpu_load is greater than ram_load, then the mobile agent will
send a message to the monitoring node for transferring light
cpu_load and vice versa. Next, it will update zone dynamics
history and will migrate to the next node. The third condition
is to check whether v_history contains value zone_3 or any
other zone. If it is in zone_3, then it means that this node has
previously highly loaded and is changed its status to lightly
loaded. As a result, the mobile agent sends a message to a
monitoring node for transferring the light processing load to
the target node. Next, it updates v_history of the node and
migrates to next node.

5.2.2 Decision algorithm for Zone_2

In continuation of the first part, the second part of the decision
algorithm identifies zone_2, which signifies a moderately
loaded zone. The pseudo code and flow diagram representa-
tion of zone_2 of decision algorithm is represented in Fig. 9
and Fig. 10 respectively.

According to the computed joint probability value, it will
assign zone_2 to a v_current variable.

The algorithm will check the zone history and current zone
status to make further decision. In the next step, the agent will
compute the cpu_load and ram_load status of the node. In case

0

1

2

3

4

5

6

7
m

in
 1

m
in

 2
m

in
 3

m
in

 4
m

in
 5

m
in

 6
m

in
 7

m
in

 8
m

in
 9

m
in

 1
0

m
in

 1
1

m
in

 1
2

m
in

 1
3

m
in

 1
4

m
in

 1
5

m
in

 1
6

m
in

 1
7

m
in

 1
8

m
in

 1
9

m
in

 2
0

m
in

 2
1

m
in

 2
2

m
in

 2
3

m
in

 2
4

m
in

 2
5

m
in

 2
6

m
in

 2
7

m
in

 2
8

m
in

 2
9

m
in

 3
0

M
ig

ra
�o

n
fr

eq
ue

nc
y

Time (min)

Migra�on frequency distribu�on of agent(under
processing load)

Fig. 27 Migration frequency distribution of agent under cpu_load and
VOD load (ex-set-3)

0

0.2

0.4

0.6

0.8

1

min
1

min2 min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

sci
manyd

gnirotino
m

dna
daol

Time (min)

Varia�on of individual and joint probabili�es of cpu/ram
load

cpu ram v

Fig. 30 Combined dynamics of CPU and RAM load of mobile agent
monitoring system (ex-set-4)

0

1

2

3

4

5

6

7

min
1

min2 min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

Ru
le

 fi
rin

g
de

ns
ity

Time (min)

Snapshot of rule firing density of algorithm

Fig. 29 Rule firing density of mobile agent monitoring system (ex-set-4)

0

1

2

3

min
1

min2 min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

Zo
ne

 d
yn

am
ic

s

Time (min)

Snapshot of zone dynamics of algorithm

Fig. 28 Zone dynamics of mobile agent monitoring system (ex-set-4)

M. Ali and S. Bagchi3476

www.manaraa.com

the cpu_load is greater than ram_load, the mobile agent will
send a message to the monitoring node to send a process with
light cpu_load to this particular node. The algorithm will up-
date the v_history variable and will migrate to the next node.
Otherwise, when the ram_load is greater than cpu_load, the
mobile agent sends a message to themonitoring node to send a
process with light ram_load. The algorithm will update the
v_history and will migrate to the next node. Based on avail-
able condition and zone dynamics, the algorithm will check
the message history (msg_history). The message history plays
a crucial role to avoid sending of the same message infinitely
to monitoring node. If the message history is greater than a
predefined value (which is set to three in this case), then the
algorithm will compute the cpu_load and ram_load of the
node once again. If the cpu_load is high then the agent sends
a message to the monitoring node to transfer processes with
high ram_load, otherwise, the agent sends a message to trans-
fer processes with cpu_load. Next, the algorithm updates the
v_history variable and initiates migration of agent. If the mes-
sage history is less than a predefined value, then the agent will
send a message to the monitoring node to transfer light
cpu_load and ram_load to a particular node. Once the message
is sent, the v_history variable is updated and the message
variable is incremented. Lastly, the agent is migrated to the
next node. If the v_history variable contains zone_3 and
v_current variable contains zone_2, then the algorithm will
update the v_history and will migrate the agent. The reason

for not taking any action by the monitoring node is to avoid an
already moderately loaded node from getting a burst of pro-
cessing load within a short time interval.

5.2.3 Decision algorithm for Zone_3

The third part of the decision algorithm describes the dynam-
ics of zone_3, which signifies a highly loaded zone. The
pseudo-code and flow diagram representation of zone_3 of
decision algorithm are presented in Fig. 11 and Fig. 12
respectively.

According to the joint probability value, the algorithm will
assign zone_3 to a v_current variable. If in a node, the
v_history variable contains zone_1 and v_current variable
contain zone_3, then the algorithm will wait for a random
amount of time to repeat the estimation. The logic of using
the random amount of time is to probabilistically avoid the
running processes near to completion to be included within
the estimation of the load. When the waiting time is over, the
algorithm will recall Compute_Node_Status function and
monitoring_decision function to evaluate the current zone sta-
tus. If the v_history contains zone_2 and v_current contains
zone_3, then the algorithm will update the v_history variable
and will enforce agent migration without sending amessage to
the monitoring node. The reason for not sending a message for

0
1
2
3
4
5
6
7
8

m
in

 1
m

in
 2

m
in

 3
m

in
 4

m
in

 5
m

in
 6

m
in

 7
m

in
 8

m
in

 9
m

in
 1

0
m

in
 1

1
m

in
 1

2
m

in
 1

3
m

in
 1

4
m

in
 1

5
m

in
 1

6
m

in
 1

7
m

in
 1

8
m

in
 1

9
m

in
 2

0
m

in
 2

1
m

in
 2

2
m

in
 2

3
m

in
 2

4
m

in
 2

5
m

in
 2

6
m

in
 2

7
m

in
 2

8
m

in
 2

9
m

in
 3

0

M
ig

ra
�o

n
fr

eq
ue

nc
y

Time (min)

Migra�on frequency distribu�on of agent(under
processing load)

Fig. 31 Migration frequency distribution of agent under cpu_load and
VOD load (ex-set-4)

0

1

2

3

min
1

min2 min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

Zo
ne

 d
yn

am
ic

s

Time (min)

Snapshot of zone dynamics of algorithm

Fig. 32 Zone dynamics of mobile agent monitoring system (ex-set-5)

0

1

2

3

4

5

6

7

min
1

min2 min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

Ru
le

 fi
rin

g
de

ns
ity

Time (min)

Snapshot of rule firing density of algorithm

Fig. 33 Rule firing density of mobile agent monitoring system (ex-set-5)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

min
1

min2 min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

sci
manyd

gnirotino
m

dna
daol

Time (min)

Varia�on of individual and joint probabili�es of cpu/ram
load

cpu ram v

Fig. 34 Combined dynamics of CPU and RAM load of mobile agent
monitoring system (ex-set-5)

Design and analysis of distributed load management: Mobile agent based probabilistic model and fuzzy... 3477

www.manaraa.com

transferring extra load is to avoid overloading scenario.
Finally, if the v_history variable contains zone_3 or null value
and, the v_current variable contains zone_3, then the agent
will send a message to monitoring node to avoid transferring
the load to an already highly overloaded node. After sending
the message to monitoring node v_history variable is updated
and the agent is migrated to next node.

5.2.4 Fuzzy based decision algorithm

The function of the fuzzy decision algorithm is to process the
input data from the agent-monitoring algorithm for decision-
making. The pseudo code and flow diagram representation of
a fuzzy decision algorithm is illustrated in Figs. 13 and 14.

In this algorithm, the Computing_Node_Status function
collects the node status and the computed result is stored ac-
cordingly. This function will determine the exact status of the
resources instantaneously at a particular time. The
Map_membership_function is used to map the values to ap-
propriate membership variables and determine their bound-
aries. To calculate the membership degree of crisp values for
CPU, RAM and stored it in a variable named condition_cpu
and condition_ram by calling the Compute_Membership
function as described in the algorithm. There are 25 rules that
have been created and implemented in the program as a pro-
cedure Apply_rule as shown in the algorithm. The

Compute_output function will compute the output result,
which is obtained by calculating the fired rule. The rules are
fired according to the currently available resource status of a
node. Implementation of the AND rule in the program is ob-
tained by the minimum value of the membership degree of
CPU and RAM. For that purpose, the Find_Min procedure is
created to get the minimum value in an array. A RunFuzzy
procedure is then generated to invoke a fuzzy procedure that
has been previously made in accordance with the steps in
fuzzy logic as shown in the algorithm.

6 Implementation environment

6.1 Agent deployment and architecture

In this section, we have described our proposed software ar-
chitecture and deployment model. Our testbed is comprised of
five nodes with one designated node for monitoring and the
remaining five are for executing mobile agents as illustrated in
Fig. 15.

The mobile agent checks the availability of a node for
migration if alive, otherwise will check for the next alive node.
Information related to nodes availability are continuously

0
1
2
3
4
5
6
7
8

m
in

 1
m

in
 2

m
in

 3
m

in
 4

m
in

 5
m

in
 6

m
in

 7
m

in
 8

m
in

 9
m

in
 1

0
m

in
 1

1
m

in
 1

2
m

in
 1

3
m

in
 1

4
m

in
 1

5
m

in
 1

6
m

in
 1

7
m

in
 1

8
m

in
 1

9
m

in
 2

0
m

in
 2

1
m

in
 2

2
m

in
 2

3
m

in
 2

4
m

in
 2

5
m

in
 2

6
m

in
 2

7
m

in
 2

8
m

in
 2

9
m

in
 3

0

M
ig

ra
�o

n
fr

eq
ue

nc
y

Time (min)

Migra�on frequency distribu�on of agent(under processing
load)

Fig. 35 Migration frequency distribution of agent under cpu_load and
VOD load (ex-set-5)

1300

1400

1500

1600

1700

1800

1 2 3 4 5 6 7 8 9 10

La
te

nc
y

(m
s)

Experiment Instances

Mobile agent migra�on and data IO latency

wired Wireless , Data size= 1 kb

Fig. 36 Comparison of mobile agent migration and data IO latency with
respect to wired and wireless node (data size = 1 kb)

1300
1350
1400
1450
1500
1550
1600
1650
1700
1750

1 2 3 4 5 6 7 8 9 10

La
te

nc
y

(m
s)

Experiment Instances

Mobile agent migra�on and data IO latency

wired Wireless , Data size= 4 kb

Fig. 37 Comparison of mobile agent migration and data IO latency with
respect to wired and wireless node (data size = 4 kb)

0

0.2

0.4

0.6

0.8

1

min
1

min
2

min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

sci
manyd

gnirotino
m

daol

Time (min)

Load monitoring varia�on of individual cpu and
ram load

Cpu Ram

Fig. 38 Variation of load monitoring dynamics of algorithm (ex-set-1)

M. Ali and S. Bagchi3478

www.manaraa.com

updated in a database. The feature of our proposed model is to
enablemobile agents to collect the load status of the individual
node and send the required information to the monitoring
node. This mechanism will reduce the response time improv-
ing the overall system performance. On the other hand, in
traditional load monitoring the current load values are collect-
ed as a whole and then forwarded to the monitoring node. The
testbed for implementing our model is consists of a heteroge-
neous OS and Java programming language is used to deploy a
mobile agent framework (i.e. Java Development Framework
(JADE)). Agents are termed as containers in JADE and are
installed on all the available nodes. Furthermore, the configu-
ration of our mobile agent framework development and
runtime environment specification is illustrated in Table 2.
Our proposed mobile agent-monitoring algorithm for moni-
toring distributed system is developed using Java eclipse IDE
on top of the JADE agent platform. In addition, to test our
proposed monitoring algorithm, we have used two additional
load generation (benchmark) software modules, which are, (a)
CPU Stress and (b) Heavy Load. The purpose of using these
software is to generate various categories of load on our target
nodes to monitor variations in our algorithmic behavior under

different load conditions. In terms of network connectivity,
one of the node is wirelessly connected and the rest is wired
connected with the monitoring node. The wired connections
operate at 100Mbps and wireless network operates on
100Mbps at maximum.

The zonal decision-making algorithms are implemented as
separate functions within the agent body (code). The total
lines of code (LOC) for each agent are equal to 182.

7 Experimental evaluations

In this section, we have evaluated the performance and behav-
ior of our proposed models under different load conditions.
The set of parameters for evaluating our proposed Agent-
based monitoring model is consisting of zone dynamics, rule
firing density, load dynamics and, migration frequency as de-
scribed in details in Section 7.1. To evaluate the behavior and
performance of our second proposed fuzzy integrated model
the set of parameters include load dynamics, fuzzy output
density and, rule firing density as illustrated in Section 7.2.

0

0.2

0.4

0.6

0.8

1

min
1

min
2

min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

Fu
zz

y
ou

tp
ut

 d
en

sit
y

Time (min)

Snapshot of fuzzy output density of algorithm

Fuzzy output

Fig. 39 Fuzzy output density of integrated module of monitoring
algorithm (ex-set-1)

1

6

11

16

21

26

min
1

min
2

min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

Ru
le

 fi
rin

g
de

ns
ity

Time (min)

Snapshot of rule firing density of algorithm

Rule firing density

Fig. 40 Rule firing density variations of integrated module of monitoring
algorithm (ex-set-1)

0

0.2

0.4

0.6

0.8

1

min
1

min
2

min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

sci
manyd

gnirotino
m

daol

Time (min)

Load monitoring varia�on of individual cpu and
ram load

Cpu Ram

Fig. 41 Variation of load monitoring dynamics of algorithm (ex-set-2)

0

0.2

0.4

0.6

0.8

1

min
1

min
2

min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

Fu
zz

y
ou

tp
ut

 d
en

sit
y

Time (min)

Snapshot of fuzzy output density of algorithm

Fuzzy output

Fig. 42 Fuzzy output density of integrated module of monitoring
algorithm (ex-set-2)

Design and analysis of distributed load management: Mobile agent based probabilistic model and fuzzy... 3479

www.manaraa.com

7.1 Evaluation of agent-based monitoring model

In this section, we are evaluating the behavior and perfor-
mance of our implemented agent-based monitoring model.
In set 1, the cpu_load is evaluated by applying two synthetic
load generation software’s named heavy load and stress
benchmark, which impose a series of non-uniform stress-load
profiles on the node. In set 2, the cpu_load is evaluated by
applying only VOD benchmark. In set 3, the cpu_load is eval-
uated by applying VOD, Heavy load and CPU stress bench-
mark. In set 4, the cpu_load and ram_load is evaluated by
employing VOD, heavy load and CPU stress benchmark. In
set 5, the ram_load is evaluated by applying heavy load and
VOD software.

7.1.1 Set 1: Agent-based monitoring model employing heavy
load and cpu stress

The variations in zone dynamics with respect to increasing
cpu_load is illustrated in Fig. 16. Initially, the CPU load is in
zone_1, which is transferred to zone_2 with further increased
in load. However, further increase in the CPU loadwill exceed
a threshold value causing migration of the load. As illustrated
in Fig. 17, the rule firing density resides in zone_4 with some
variations to other zones with respect to CPU load. As

illustrated in Fig. 18, the behavior of our proposed algorithm
is observed for the combined dynamics of joint probability by
a gradual increase in the CPU load and keeping RAM load at a
constant rate. The variations in migration frequency are illus-
trated in Fig. 19.

7.1.2 Set 2: Agent-based monitoring model employing heavy
load and VOD

The variation in zone dynamics with respect to increasing
cpu_load and VOD is illustrated in Fig. 20. Initially, cpu_load
is in zone_1, however, a gradual increase in the load results in
a transition of the node to zone_3 and it stays there without
migration. However, due to background processes, an abrupt
increase in the load happens exceeding the specified threshold
value. This results in agent migration. The variations in rule
firing density are illustrated in Fig. 21. The variations in the
combined dynamics of CPU/RAM utilization and joint prob-
ability are illustrated in Fig. 22. Under increased cpu_load and
VOD, the status of CPU utilization becomes maximum. The
variations in migration frequency are illustrated in Fig. 23. It is
shown in the figure that increasing the CPU load and VOD
causes frequent migration of agent between different zones.

1

6

11

16

21

26

min
1

min
2

min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

Ru
le

 fi
rin

g
de

ns
ity

Time (min)

Snapshot of rule firing density of algorithm

 Rule firing density

Fig. 43 Rule firing density variations of integrated module of monitoring
algorithm (ex-set-2)

0

0.2

0.4

0.6

0.8

1

min
1

min
2

min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

sci
manyd

gnirotino
m

daol

Time (min)

Load monitoring varia�on of individual cpu and
ram load

Cpu Ram

Fig. 44 Variation of load monitoring dynamics of algorithm (ex-set-3)

0

0.2

0.4

0.6

0.8

1

min
1

min
2

min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

Fu
zz

y
ou

tp
ut

 d
en

sit
y

Time (min)

Snapshot of fuzzy output density of algorithm

Fuzzy output

Fig. 45 Fuzzy output density of integrated module of monitoring
algorithm (ex-set-3)

1

6

11

16

21

26

min
1

min
2

min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

Ru
le

 fi
rin

g
de

ns
ity

Time (min)

Snapshot of rule firing density of algorithm

Rule firing density

Fig. 46 Rule firing density variations of integrated module of monitoring
algorithm (ex-set-3)

M. Ali and S. Bagchi3480

www.manaraa.com

7.1.3 Set 3: Agent-based monitoring model employing heavy
load, VOD and CPU stress

As illustrated in Fig. 24, variation in zone dynamics is ob-
served with the initial load in zone_3. However, further in-
creases in the cpu_load as well as in the background processes
will migrate the load. As illustrated in Fig. 25, variations in
rule firing density is observed with high load transfer in
zone_7. However, crossing threshold values will cause the
load to migrate. The variations in the combined dynamics of
CPU/RAM utilization and the joint probability is illustrated in
Fig. 26. The variations in migration frequency are illustrated
in Fig. 27. It is shown in the figure that increasing the CPU
load, VOD and cpu_stress causes frequent migration of agent.

7.1.4 Set 4: Agent-based monitoring model employing heavy
load, VOD and CPU stress

The variation in zone dynamics with respect to increasing
cpu_load is illustrated in Fig. 28. It observed that initially, a
load of a particular node is in zone_1, which is migrated when
exceeding a threshold value. The variations in rule firing den-
sity are illustrated in Fig. 29. As shown in the figure, increas-
ing the load will cause agent migration conditioned to rule
firing density. The variations in the combined dynamics of

CPU/RAM utilization and, computed joint probability are il-
lustrated in Fig. 30. The continuous increase in the ram_load
causes the status of RAM utilization at maximum. The varia-
tions in migration frequency are illustrated in Fig. 31. Gradual
increasing RAM and CPU load cause frequent migration of
the agent.

7.1.5 Set 5: Agent-based monitoring model employing heavy
load and VOD

The variation in zone dynamics with respect to increasing
ram_load is illustrated in Fig. 32. Initially, the load is in
zone_1, but a gradual increase in the ram load will exceed a
threshold value to migrate the load. The variations in rule
firing density are illustrated in Fig. 33. In the case of rule firing
density. initially, the agent is in zone_1, but with further in-
crease in RAM load causes the agent to migrate. The varia-
tions in the combined dynamics of CPU/RAM utilization and,
joint probability are illustrated in Fig. 34. In this experiment,
the Ram load is in increasing state and the CPU load is con-
stant causes the status of RAM utilization at maximum. The
variations in migration frequency are illustrated in Fig. 35. It is
shown in the figure that increasing the RAM load and VOD
causes frequent migration of agent between different zones.

0

0.2

0.4

0.6

0.8

1

min
1

min
2

min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

sci
manyd

gnirotino
m

daol

Time (min)

Load monitoring varia�on of individual cpu and
ram load

Cpu Ram

Fig. 47 Variation of load monitoring dynamics of algorithm (ex-set-4)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

min
1

min
2

min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

Fu
zz

y
ou

tp
ut

 d
en

sit
y

Time (min)

Snapshot of fuzzy output density of algorithm

Fuzzy output

Fig. 48 Fuzzy output density of integrated module of monitoring
algorithm (ex-set-4)

0
2
4
6
8

10
12
14
16
18

min
1

min
2

min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

Ru
le

 fi
rin

g
de

ns
ity

Time (min)

Snapshot of rule firing density of algorithm

Rule firing density

Fig. 49 Rule firing density variations of integrated module of monitoring
algorithm (ex-set-4)

0

0.2

0.4

0.6

0.8

1

min
1

min
2

min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

sci
manyd

gnirotino
m

daol

Time (min)

Load monitoring varia�on of individual cpu and
ram load

Cpu Ram

Fig. 50 Variation of load monitoring dynamics of algorithm (ex-set-5)

Design and analysis of distributed load management: Mobile agent based probabilistic model and fuzzy... 3481

www.manaraa.com

7.1.6 Mobile agent migration latency

In Figs. 36 and 37, the comparison of mobile agent migration
latency is illustrated for the wired and wireless nodes. As
illustrated in Figs. 36 and 37, the agent behavior in the wired
node is relatively stable without major increase or decrease in
latency, because the wired connection is more reliable and
provides a stable connection to support bandwidth for a large
volume of data. While in Figs. 36 and 37, the behavior of
wireless node is aperiodic and tends to overshoot and under-
shoot with respect to network load and congestion of wireless
network increasing the agent migration latency in the wireless
network. The decreased latency values at instances 1, 3, 5 and
9, which is almost close to the wired node that at particular
instances due to less congestion (packet loss is almost none
and signal strength is good). The mobile agent migration la-
tency is not greatly affected by the data volume it carries in the
network.

7.2 Integrated evaluation

In this section, we have evaluated the agent-based monitoring
algorithm integrated with fuzzy based decision-making mod-
ule. The integrated module executes computing the status of
currently available node resources in a specific amount of
time. To evaluate the behavior and performance of our imple-
mented model, we have conducted five sets of experiments
(ex-set-1 to ex-set-5) under different load conditions. The pa-
rameter used in the evaluation of the performance are load
dynamics, fuzzy output density, and rule firing density. To
measure the fuzzy output density it is the total number of
defuzzified output values for decision-making in a specific
time interval. The function of fuzzy output density is to collect
the current status of system resources to compute the
defuzzified output values for decision-making. To measure
the rule firing density is to calculate the total number of rules
fired in given time intervals to map the input data values. The
function of the rule firing mechanism is to partially match the
input to make an inference and to combine all the conclusions
of the rules to form a final output.

7.2.1 Set 1: Fuzzy integrated model employing heavy load
and CPU stress

In the first experiment, CPU load is employed by heavy load
and CPU stress benchmark for estimating the behavior of
CPU and RAM load variation, fuzzy output density, and rule
firing density of fuzzy integrated model. The variation in load
status with respect to increasing CPU load is illustrated in
Fig. 38. The variation in fuzzy output is illustrated in
Fig. 39. The rule firing density variation is illustrated in
Fig. 40.

7.2.2 Set 2: Fuzzy integrated model employing heavy load
and VOD

In this case, the CPU load is employed by using heavy load
and video on demand (VOD) benchmarks for estimating the
behavior of CPU and RAM load variation, fuzzy output den-
sity and, rule firing density of fuzzy integrated model. The
variation of CPU and RAM status with respect to increasing
CPU load and VOD is illustrated in Fig. 41. Under increased
CPU load and VOD, the status of CPU utilization becomes
maximum. The variation of fuzzy output density is illustrated
in Fig. 42. It is shown in the figure that increasing the CPU
and VOD causes the high density of fuzzy output. The varia-
tion in rule firing density is illustrated in Fig. 43.

7.2.3 Set 3: Fuzzy integrated model employing heavy load,
VOD and CPU stress

In this case, the CPU load is employed by heavy load gener-
ation software, VOD, and CPU Stress benchmarks for esti-
mating the behavior of CPU and RAM load variation, fuzzy
output density, and rule firing density of fuzzy integrated mod-
el. The variation of CPU and RAM load status with respect to
increasing CPU load is illustrated in Fig. 44. The variation of

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

min
1

min
2

min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

Fu
zz

y
ou

tp
ut

 d
en

sit
y

Time (min)

Snapshot of fuzzy output density of algorithm

Fuzzy output

Fig. 51 Fuzzy output density of integrated module of monitoring
algorithm (ex-set-5)

0
1
2
3
4
5
6
7
8
9

min
1

min
2

min
3

min
4

min
5

min
6

min
7

min
8

min
9

min
10

min
11

min
12

min
13

min
14

min
15

Ru
le

 fi
rin

g
de

ns
ity

Time (min)

Snapshot of rule firing density of algorithm

Rule firing density

Fig. 52 Rule firing density variations of integrated module of monitoring
algorithm (ex-set-5)

M. Ali and S. Bagchi3482

www.manaraa.com

fuzzy output density is illustrated in Fig. 45. The variation in
rule firing density is illustrated in Fig. 46.

7.2.4 Set 4: Fuzzy integrated model employing heavy load,
VOD and CPU stress

In this case, the CPU load and RAM load are employed by
applying heavy load and CPU Stress benchmarks for estimat-
ing the behavior of CPU and RAM load variation, fuzzy out-
put density and, rule firing density of fuzzy integrated model.
The variation of CPU and RAM load status with respect to
increasing CPU load is illustrated in Fig. 47. The variation of
fuzzy output density is illustrated in Fig. 48. The variation in
rule firing density is illustrated in Fig. 49.

7.2.5 Set 5: Fuzzy integrated model employing heavy load
and VOD

In the last experiment, the CPU and RAM load are employed
by heavy load generation software and VOD benchmarks for
estimating the behavior of CPU and RAM load variation,
fuzzy output density, and rule firing density of fuzzy integrat-
ed model. The variation of CPU and RAM load status with
respect to increasing CPU load is illustrated in Fig. 50. The
variation of fuzzy output density is illustrated in Fig. 51. The
variation in rule firing density is illustrated in Fig. 52.

8 Comparative analysis

We have evaluated our mobile agent-based load monitoring
model (MABMS) with various agent-based load monitoring

frameworks as well as with our fuzzy integrated model (FIM)
for performance analysis. In this section, we have compared
our two models, agent-based load monitoring and fuzzy inte-
grated model qualitatively as well as quantitatively. Some of
the other models which we compare are, Agent-Based
Adaptive Monitoring System [38], Java Based Agent
Management System [39], Localhost Information Service
Agent (LISA) [29],Web Server LoadMonitoring System using
a Mobile Agent [28], A Method of Network Monitoring by
Mobile Agents [11], A Mobile Agent-Based System for
Server Resource Monitoring [14], Mobile Agent-Based Load
Monitoring [40], and Monitoring Agents in A Large
Integrated Services Architecture (MonALISA) [41]. Eachmo-
bile agent model is examined and evaluated with respect to
various design parameters and attributes like autonomous, re-
liability, mobility, network latency, heterogeneity and, flexi-
bility. A detailed discussion is explained in the following
sections.

8.1 Qualitative analysis of MABMS and FIM models

In this section, for the comparison purpose, we have selected
six parameters for our analysis namely, autonomy, reliability,
mobility, network latency, accuracy, and efficiency as illustrat-
ed in Table 3. The values of performance metric are deter-
mined with approximation by analysis. The metric values
are set on a scale between 0 and 1, where 0 represents the
lowest value, and 1 represents the highest value. We have
divided the interval into three zones such as the first zone is
from 0 to 0.3 (low zone), the second zone is from 0.3 to 0.6
(medium zone), and the last zone is from 0.6 to 1 (high zone).

Table 3 Comparative analysis of
mobile agent-based monitoring
system and fuzzy integrated
model

Parameters Autonomous Reliability Mobility Network latency Accuracy Efficiency
Monitoring models

MABMS H H H L M M

FIM H H H L H H

HHigh,MMedium, L Low,Mobile Agent-BasedMonitoring System (MABMS), Fuzzy Integrated Model (FIM)

0
2000
4000
6000
8000

10000
12000
14000

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

Ex
ec

u�
on

 �
m

e
(m

s)

Instances

Comparing total execu�on time between FIM
and MABMS models

FIM MABMS

Fig. 53 Total execution time of FIM and MABMS models

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

De
ci

sio
n

ex
ec

u�
on

 ti
m

e

Instances

Comparing decision execu�on �me between FIM
and MABMS models

FIM MABMS

Fig. 54 Decision time of FIM and MABMS models

Design and analysis of distributed load management: Mobile agent based probabilistic model and fuzzy... 3483

www.manaraa.com

In the case of autonomy, agent-based monitoring model is in a
high zone, because mobile agents are goal driven and there-
fore collects status information autonomously. In the case of
reliability, the agent-based monitoring system is in a high
zone, because if a fault occurs then the mobile agent will
automatically inform the monitoring node to take necessary
action. FIM model is in a high zone because it uses mobile
agents as well as fuzzy logic based decision module which
increases the reliability of the overall system. In the case of
mobility, agent-basedmonitoringmodel and FIMmodel are in

the high zone, because both the models use mobile agents. In
case of network latency, agent-based monitoring model and
FIM model are in the low zone, because in both the models
mobile agents carry the execution code to the target node and
only results are sent back to monitoring nodes. Thus, the over-
all data communication is reduced resulting in a low network
latency. In the case of accuracy, agent-based monitoring mod-
el is in the medium zone, because the mobile agent decision
module cannot yield fine grain information from the collected
data. The FIM model is in the high zone by employing the
fuzzy logic based decision module to collect fine-grained in-
formation that is accurate and precise in nature. In the case of
efficiency, agent-based monitoring model is in the middle
zone, because the mobile agents in this model only collect
coarse-grained information for decision-making. However,
the FIM model efficiency is in the high zone, because in this
model mobile agents are used for collecting status of available
resources and fuzzy logic is used for decision making which
enhances the efficiency of the overall system.

8.1.1 Quantitative analysis of MABMS and FIM models

In this section, we will quantitatively analyze our proposed
models. The parameters for the comparative study is based on

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20

Ra
�o

 v
al

ue

Load condi�ons

Comparing Qm1 values between FIM and MABMS
models

FIM MABMS

Fig. 55 Comparison of time ratio between FIM and MABMS models

Table 4 Comparison of total execution time, decision time, Decision output value and, computed ratio of FIM and MABMS models

Load Total Execution Time Decision Time Decision output value Computed ratio

L CPU
%

RAM
%

Agent-based
monitoring
model (TE)

Fuzzy
integrated
model (TE)

Agent-based
monitoring
model (TD)

Fuzzy
integrated
model (TD)

Agent-based
monitoring
model Qm2

Fuzzy
integrated
model Qm2

Agent-based
monitoring
model Qm1

Fuzzy
integrated
model Qm1

L1 0.04 0.8 1391 2661 577 851 0.032 0.2 0.41 0.31

L2 0.08 0.76 1284 2616 271 892 0.06 0.18 0.44 0.34

L3 0.12 0.72 1566 2604 564 654 0.08 0.17 0.36 0.25

L4 0.16 0.68 1355 2599 682 836 0.01 0.27 0.50 0.32

L5 0.20 0.64 1336 2595 690 794 0.12 0.26 0.51 0.30

L6 0.24 0.60 1206 2619 640 726 0.14 0.24 0.53 0.27

L7 0.28 0.56 1125 2599 656 674 0.15 0.26 0.58 0.25

L8 0.32 0.52 1497 2598 576 530 0.16 0.30 0.38 0.20

L9 0.36 0.48 1497 2614 510 590 0.172 0.37 0.34 0.22

L10 0.40 0.44 1523 2613 577 601 0.176 0.40 0.37 0.23

L11 0.44 0.40 1391 2605 528 589 0.176 0.43 0.37 0.22

L12 0.48 0.36 1209 2435 508 801 0.172 0.49 0.42 0.32

L13 0.52 0.32 1501 2439 800 830 0.16 0.53 0.53 0.34

L14 0.56 0.28 1140 2694 533 563 0.15 0.56 0.46 0.20

L15 0.60 0.24 1430 2504 615 558 0.14 0.59 0.43 0.22

L16 0.64 0.20 1391 2540 557 753 0.12 0.65 0.40 0.29

L17 0.68 0.16 1349 2617 552 671 0.1 0.69 0.40 0.25

L18 0.72 0.12 1240 2498 626 730 0.8 0.73 0.50 0.29

L19 0.76 0.08 1125 2531 605 789 0.6 0.77 0.53 0.31

L20 0.8 0.04 1374 2620 633 546 0.32 0.84 0.46 0.20

M. Ali and S. Bagchi3484

www.manaraa.com

total execution time, decision time, the ratio of decision/
execution time, and quality of output as illustrated in
Figs. 53, 54, 55 and, 56 respectively. Analysis for estimating
total time execution for both the models are subject to have the
same load as well as the same time intervals. The aim of this
experiment is to analyze the time complexity of our models. It
is observed that measuring time complexity the average exe-
cution time of the FIM model is slightly higher than the
MABMS model as illustrated in Fig. 53. In the FIM model,
decision-making is based on current status information for
decision making. The agents collect status information and
the fuzzy decision module use this data for decision-making.
This functional behavior leads to high intercommunication
resulting in high time complexity between connected nodes.
The MABMS model uses only an agent for both collecting
status information as well as decision making resulting in a
decrease in time complexity. We have used predefined load
status data for analyzing the decision time of our proposed
models. In this experiment, the agent collects and submit
predefined status information to decision module for

decision-making. It is observed that the decision time of
MABMS is significantly low as compared to the FIM model,
as illustrated in Fig. 54. The MABMS model computes
coarse-grained information consuming less amount of time
in decision making, while FIM model computes fine grain
information for decision and thus consuming more time in
decision-making. Computing quality of output, we have con-
sidered three parameters characterizing as, decision time (TD),
total execution time (TE) and, decision output value.
Moreover, to perform this experiment, we have considered
two quality metric Qm1 and Qm2. The quality metric Qm1 is
the computed ratio (TD / TE) and Qm2 is the computed estima-
tion of real numbers. In the case of MABMS model, Qm2 is a
probabilistic normed value and in the FIM model, Qm2 is the
defuzzified output value. This quality metric estimation is
done by a variety of different load conditions ranging from
L1 to L20. L1 starts from lowest CPU and highest RAM
(CPU: 0.04%, RAM: 0.8%) to the transition of the load dis-
tribution, while L20 is the opposite situation i.e. highest CPU
and lowest RAM (CPU: 0.8%, RAM: 0.04%) as illustrated in
Table 4. It is observed that the ratio of quality matrix Qm1

MABMS model is higher than the FIM model as illustrated
in Fig. 55. In the FIMmodel, the time ratio is a bit high due to
complex decision-making logic however, the output value is
comparatively low under the same inputs. Complex decision
logic evaluates a user-defined condition and then runs a se-
quence of test steps subject to return values of the condition.
The condition used in the complex decision logic compares
two values and returns a single value based on this compari-
son. The complex decision logic can be created by nesting
many levels of condition statements as per required logic. In
the case of quality matrix Qm2, the experiment is carried out to
observe the accuracy of FIM and MABMS models. In this
experiment, a set of predefined load status data is used to
observe the decision-making behavior at different load levels
(L) as illustrated in Table 4. The FIM model possesses a high
accuracy of decision-making as compared to MABMS model
as illustrated in Fig. 56. The high accuracy is due to usage of
smooth function that collects fine grain information for deci-
sion-making. The non-smooth function has sharp boundaries
restricting from collecting fine-grained information on a con-
tinuous basis. Therefore, these functions are not differentiable
everywhere. Thus, by losing valuable information not only
affects the performance but also decreases the accuracy of
decision-making. To find the relation between FIM and
MABMS model we compute the cross-correlation of quality
output values. Cross-correlation is used to compare two dif-
ferent datasets to detect if there is any relation between them
having the same maximum and minimum values. To identify
the level of correlation between two data sets i.e. quality of
output value of the FIMmodel as well as MABMSmodel, we
use normalized cross-correlation. The normalized cross-
correlation can be computed as,

0

0.2

0.4

0.6

0.8

1

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20

Es
�m

a�
on

 v
al

ue

Load condi�ons

Comparing quality of output (Qm2) between FIM
and MABMS models

FIM MABMS

Fig. 56 Comparison of quality of output between FIM and MABMS
models

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16

De
ci

sio
n

lo
gi

c

Time (min)

Comparison of decision logic execu�ons of MABMS and
FIM models (under equal load profile)

MABMS FIM

Fig. 57 Comparison of decision logic execution of FIM and MABMS
models

Design and analysis of distributed load management: Mobile agent based probabilistic model and fuzzy... 3485

www.manaraa.com

norm corr a; bð Þ ¼ ∑L20
n¼L1a n½ � � b n½ �ffi

∑L20
n¼L1a n½ �2 � ∑L20

n¼L1b n½ �2
q

Where (a) denotes FIM model quality output value and
(b) denotes MABMS model quality output value where the
sample length (n) is 20. By using the above formula, we
compute the normalized cross-correlation for the FIM and
MABMS models. Which shows that the FIM and MABMS
models correlate, with a value of 0.155. The correlation
between two variable is said to be perfectly correlated if
it is equal to 1, if they are perfectly anticorrelated then −1
and, if they are completely uncorrelated then the value is 0.
The correlation of FIM and MABMS is 0.155, which indi-
cates that two models are correlated but are not perfectly
correlated.

8.1.2 Comparison of decision logic executions

In this section, the rule firing density is evaluated to determine
the performance of decision logic of MABMS and FIM

algorithm. In this experiment, we have employed CPU stress
and Heavy load benchmark to compute the combined load
stress profile of CPU and RAM under the same load profiles.
The total experimental execution time is sixteen minutes and
after every two minutes, we change the load stress profile to
evaluate the performance. The x-axis represents the time in a
millisecond and y-axis represent the decision logic as shown
in Fig. 57. For the comparison we have selected seven rules
namely as, Any_load, light_cpu_ram_load, light_ram_load,
light_cpu_load, load_cpu, load_ram, and stop_sending_load.
As shown in the Figure, 70 to 75% the rule firing density of
the decision logic remain the same. However, due to
collecting fine-grained information the rule firing density of
FIM algorithm is comparatively low. On the other hand,
MABMS algorithm collects coarse-grained information,
which results in high rule firing density as illustrated in
Fig. 57.

8.1.3 Qualitative analysis with other models

In our qualitative analysis, we have selected six parameters for
qualitative analysis namely, autonomous, reliability, mobility,

Table 5 Comparative analysis of
load monitoring models Parameters Autonomousity Reliability Mobility Network

latency
Flexibility Heterogeneity

Agent-Based
Models

ABAMS H L H H H H

MABNMMS H H H M L H

MonALISA H H H L M H

MABSRMS H M H M L M

DMSBA M H H M H H

MABLM H M H M L H

LISA H H H L H H

MABMS H H H L M H

H High, M Medium, L Low, agent-based adaptive monitoring system (ABAMS), Mobile agent-based network
monitoring and management system (MABNMMS), Monitoring Agents in A Large Integrated Services
Architecture (MonALISA), Mobile Agent-Based Server Resource Monitoring System (MABSRMS),
Distributed Management System based on java agents (DMSBA), Mobile Agent-Based Load Monitoring
(MABLM), Localhost Information Service Agent (LISA), Mobile Agent-Based Monitoring System (MABMS)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Fa
ul

t t
ol

er
an

t r
a�

o

Mobile agent models

Mobile agents models fault tolerant

Fig. 58 Fault tolerance of mobile agent models

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Sc
al

ab
ili

ty
 ra

�o

Mobile agent models

Mobile agent models scalability

Fig. 59 Scalability distribution of mobile agent models

M. Ali and S. Bagchi3486

www.manaraa.com

network latency, flexibility, and heterogeneity as illustrated in
Table 5. Moreover, we have selected seven models for com-
paring with our proposed MABMS model. This set of models
consisting of, Agent-Based Adaptive Monitoring System [38],
Java Based Agent Management System [39], Localhost
Information Service Agent (LISA) [29], Web Server Load
Monitoring System using a Mobile Agent [28], A Method of
Network Monitoring by Mobile Agents [11], A Mobile Agent-
Based System for Server Resource Monitoring [14], Mobile
Agent-Based LoadMonitoring [40], andMonitoring Agents in
A Large Integrated Services Architecture (MonALISA) [41].
These models have employed mobile agents for data collec-
tion, fault tolerance, efficiency, autonomous behavior, reliabil-
ity and, scalability. It is observed that our model is in high
zones except for when it is in a low (L) zone concerning
network latency and in medium (M) zone concerning flexibil-
ity. The network latency is in the low zone because of agent-
based controlled communication with the monitoring node
and client nodes. Flexibility is in medium (M) zone because
in our model changes in runtime environment are not allowed
to specify additional functionalities.

8.1.4 Quantitative analysis with other models

In this section, we will quantitatively analyze different agent-
based monitoring models. The comparative studies are per-
formed based on fault tolerance, scalability, and response time
as illustrated in Figs. 58, 59 and, 60, respectively. The values
of performance metric are determined with approximation by
analysis. As the fault tolerance, scalability, and response time
is not quantifiable by using any exact analytical model, hence
the method of empiricism (empirical quantitative analysis) is
used. In our empirical estimation, the discretely quantized
mapping is used in a unit interval. The metric values are set
on a scale between 0 and 1, where 0 represents the lowest
value and, 1 represents the highest value. We have divided
the interval into three zones such as the first zone is from 0
to 0.3 (low zone), the second zone is from 0.3 to 0.6 (medium
zone) and, the last zone is from 0.6 to 1 (high zone). In Fig. 58,

ABAMS model is in a low zone in terms of fault tolerance
because there is no such mechanism exists that could be used
to recover from failures (i.e. low fault tolerant). MABNMMS
monitoring model is in the medium zone because in this mod-
el the fault management uses mobile agents to monitor the
network to identify faults and take necessary recovery action
[11]. MonALISA framework is in the medium zone because
this framework assigns an independent thread to each task so
that if some tasks fail due to an error the other tasks should not
be affected. MABSRMS monitoring framework is in a low
zone because it uses more than one server to avoid failures,
however there is no other efficient mechanism to make this
framework fault tolerant. DMSBA is in the medium zone
because this model uses broker agents that detect failures or
congestion automatically and change the granularity at which
the data is collected. MABLM is in the medium zone because
this model uses a master agent to keep track of slave agents in
case of failure. LISA framework is in the high zone because
the core system is used to monitor the deployed module. The
function of the core system is to restart the module in case of
failures or malfunctions due to some running conditions or
programming faults. In Fig. 59, the scalability of ABAMS
framework is in the medium zone because it can monitor more
than one multicast groups and the administrator can add or
remove multicast group without disturbing the system perfor-
mance [38]. MABNMMS monitoring model is in a low zone
because this framework is tested on a fixed number of nodes,
however, there is no data that shows that how it will perform
in large-scale distributed systems. MonALISA is in the medi-
um zone because this model is based on reusable threads upon
completion of assigned tasks and these threads can be
assigned to other nodes. MABSRMS monitoring framework
is in the high zone because this model is designed for large-
scale distributed systems. LISA framework is in the high zone
because the agents automatically detect the underlying archi-
tecture and load binary modules necessary to perform moni-
toring services.

In Fig. 60, the comparison of response time for the 3-node
model is illustrated considering MABNMMS and MABMS.
As illustrated in Fig. 60, the response time of MABMS is less
than MABNMMS, which shows that MABMS performance
is better than MABNMMS. The results illustrate that the re-
sponse time is dependent on the complexity of script as well as
the number of available nodes in the network. Therefore, the
response time increases with the increase in a number of nodes
in the network and vice versa. While MABMS uses Java-
based agents that are platform independent and lightweight
agents. The Java-based agent migrates to various nodes along
with its state and code. The mobile agent collects status infor-
mation and, sends it to the monitoring node. Next, it migrates
to the next available node in the network. Thus, this mecha-
nism reduces the response time of nodes. On the other hand,
MABNMMS executes on all available nodes, collects status

1450

1500

1550

1600

1650

1700

1750

MABNMMS MABMS

Re
sp

on
se

 �
m

e
(m

s)

MABNMMS: Mobile agent-based network monitoring and management system
MABMS: Mobile agent-based monitoring system

Comparison of response �me for 3-Node triangular model

Fig. 60 Comparison of response time for 3-Node triangular model

Design and analysis of distributed load management: Mobile agent based probabilistic model and fuzzy... 3487

www.manaraa.com

information, and sends the results to monitoring node increas-
ing response time.

9 Conclusion

In large-scale distributed systems, manually keeping track
of the system load variations is a challenging task in terms
of management and accuracy of decision-making. In this
paper, we have developed and implemented two different
resource estimation and monitoring models. In the mobile
agent-based model, the pure agent-based approach is used
for load estimation by employing a joint probability based
estimation of resources and a norm function, which is com-
putationally inexpensive. This model can be used in a time-
critical system where low time complexity is required.
Moreover, the mobile agent is lightweight, goal oriented
and autonomous software entity, which consumes fewer
network resources. In addition, our proposed agent-based
model is characterized by having decreased time complex-
ity as well as improved system performance. The second
model is an integrated load balancing and monitoring mod-
el employing type-1 fuzzy logic. The fuzzy integrated mod-
el is characterized by smooth and composite fuzzy mem-
bership function to model fine-grained load information.
Moreover, the fuzzy integrated model can be used in a
system where the precision and accuracy of decision mak-
ing is required. Comparative studies of performances of the
two models are carried out and results are presented in this
paper. The comparative analysis illustrates that the fuzzy
integrated model is preferable due to better accuracy of
decision making and to achieve better execution time. We
have measured the cross-correlation of performances be-
tween two models to find out the variations of quality of
output values.

The future work includes the implementation of type-2
fuzzy logic mechanism in our fuzzy integrated model. The
type-2 fuzzy logic approach will handle more precisely and
accurately the rule of uncertainties in determining load mon-
itoring and load balancing. However, implementing this ap-
proach will be challenging by keeping reduced computational
time complexity along with reduced computational cost. The
high computational cost of the iterative algorithmmeans that it
is more expensive to deploy type-2 fuzzy logic based ap-
proach. In our fuzzy integrated model, we have to implement
a fuzzy decision module in the monitoring node. In the future
work, we will implement fuzzy decision module embedded in
software agents for decision making on the destination node.
The advantage of this approach will be to reduce the compu-
tation at the monitoring node. Moreover, in this approach, we
will introduce a backup mechanism to overcome the problem
of single point of failure.

References

1. Xu F, Liu F, Liu L, Jin H, Li B (2014) iAware: making live migra-
tion of virtual machines interference-aware in the cloud. IEEE
Trans Comput 63:3012–3025

2. Rajani S., and Garg N. A clustered approach for load balancing in
distributed systems, international journal of Mobile Computing &
Application, volume: 2, SSRG-IJMCA, 2015, ISSN: 2393-9141

3. Wörn H, Längle T, Albert M, Kazi A, Brighenti A, Seijo SR, Senior
C, BobiMAS, Collado JV (2004) Diamond: distributed multi-agent
architecture for monitoring and diagnosis. Prod Plan Control 15(2):
189–200

4. Tomarchio, O., Vita, L. and Puliafito, A., Active monitoring in grid
environments usingmobile agent technology, In ActiveMiddleware
Services, Springer, Boston, MA, 2000, pp. 57–66

5. Haverkamp DS, Gauch S (1998) Intelligent information agents:
review and challenges for distributed information sources. J
Assoc Inf Sci Technol 49(4):304–311

6. Alakeel AM (2016) Application of fuzzy logic in load balancing of
homogenous distributed systems. Int J Comput Sci Secur IJCSS
10(3):95–101

7. AlipourMM, DerakhshiMRF (2016) Two level fuzzy approach for
dynamic load balancing in the cloud computing. J Electron Syst
6(1):17–31

8. Ahn, H.C., Youn, H.Y., Jeon, K.Y. and Lee, K.S. Dynamic load
balancing for large-scale distributed system with intelligent fuzzy
controller, In Information Reuse and Integration, IEEE
International Conference on, IEEE, 2007, pp. 576–581

9. Das S (2013) Mobile agents in distributed computing: network
exploration. Bulletin of EATCS 1:109

10. Papavassiliou S, Puliafito A, Tomarchio O, Ye J (2002) Mobile
agent-based approach for efficient network management and re-
source allocation: framework and applications. IEEE J Sel Areas
Commun 20(4):858–872

11. Manvi SS, Venkataram PA method of network monitoring by mo-
bile agents. Computing 2(3):4–5

12. Adacal M, Bener AB (2006) Mobile web services: a new agent-
based framework. IEEE Internet Comput 10(3):58–65

13. Du TC, Li EY, Chang AP (2003) Mobile agents in distributed
network management. Commun ACM 46(7):127–132

14. Aridor, Yariv and Danny B. L. Agent design patterns: elements of
agent application design, In Proceedings of the second international
conference on Autonomous agents, ACM, 1998, pp. 108–115

15. Mostafa, Salama A., Mohd S. A., Muthukkaruppan A., Azhana A.,
and Saraswathy S. G. A dynamically adjustable autonomic agent
framework, In Advances in Information Systems and Technologies,
Springer, 2013, pp 631–642

16. Ku H, Luderer GW, Subbiah B (1997) An intelligent mobile agent
framework for distributed network management. In Global tele-
communications conference, GLOBECOM'97. IEEE 1:160–164

17. Corradi A, Cremonini M, Montanari R, Stefanelli C (1999) Mobile
agents integrity for electronic commerce applications. Inf Syst 24(6,
Elsevier):519–533

18. Ahn J (2010) Fault-tolerant Mobile agent-based monitoring mech-
anism for highly dynamic distributed networks. IJCSI Int J Comput
Sci Issues 7(3):1–7

19. Park HJ, Jyung KJ, Kim SS (2004) Mobile agent-based load mon-
itoring system for the safety web server environment. In: In inter-
national conference on computational science. Springer, pp 274–
280

20. WangX,WangH,WangY (2010) A unified monitoring framework
for distributed environment. Intell Inf Manag 2(07):398–405

21. Massie ML, Chun BN, Culler DE (2004) The ganglia distributed
monitoring system: design, implementation, and experience.
Parallel Comput 30(7):817–840

M. Ali and S. Bagchi3488

www.manaraa.com

22. Vidhate SL, Kharat MU (2014) Resource aware monitoring in dis-
tributed system using Tabu search algorithm. Int J Comput Appl
96(23):22–25

23. Tomarchio, O. and Vita, L. On the use of mobile code technology
for monitoring grid system, In Cluster Computing and the Grid,
Proceedings First IEEE/ACM International Symposium on, IEEE,
2001, pp. 450–455

24. Iosup, A., Ţãpuş, N. and Vialle, S. A monitoring architecture for
control grids, In European Grid Conference, Springer, 2005, pp.
922–931

25. Mace, J., Roelke, R. and Fonseca, R. Pivot tracing: dynamic causal
monitoring for distributed systems, In Proceedings of the 25th sym-
posium on operating systems principles, ACM, 2015, pp. 378–393

26. Gunter, D., Tierney, B., Jackson, K., Lee, J. and Stoufer, M.
Dynamic monitoring of high-performance distributed applications,
In High performance distributed computing, 11th IEEE internation-
al symposium, IEEE, 2002, pp. 163–170

27. Hoke E, Sun J, Faloutsos CI (2006) Intelligent system monitoring
on large clusters. In: Proceedings of the 32nd international confer-
ence on very large data bases, VLDB endowment, ACM, pp 1239–
1242

28. Tie Z (2013) A Mobile agent-based system for server resource
monitoring. Cybernetics and Information Technologies 13(4):
104–117

29. Dobre, C., Voicu, R., Muraru, A., and Legrand, I.C. A distributed
agent based system to control and coordinate large scale data trans-
fers, 2011, arXiv preprint arXiv:1106.5171, 2011

30. Seenuvasan P, Kannan A, Varalakshmi P (2017) Agent-based re-
source management in a cloud environment. ApplMath 11(3):777–
788

31. Helmy T, Al-Jamimi H, Ahmed B, Loqman H (2012) Fuzzy logic-
based scheme for load balancing in grid services. J Softw Eng Appl
5:149–157

32. Floyd MW, Esfandiari B (2018) Supplemental observation acquisi-
tion for learning by observation agents. Appl Intell, Springer 48:1–
17. https://doi.org/10.1007/s10489-018-1191-5

33. Zhong W, Zhuang Y, Sun J, Gu J (2018) A load prediction model
for cloud computing using PSO-based weighted wavelet support
vector machine. Appl Intell, Springer 48:1–12. https://doi.org/10.
1007/s10489-018-1194-2

34. Bagchi S (2016) Probabilistic and fuzzy process classifiers for op-
erating systems scheduler. Fundamenta Informaticae 145(4):405–
427

35. Rahmat RS, Lafuerza Guillén B (2009) Probabilistic norms and
statistical convergence of random variables, surveys inmathematics
and its applications, vol 4, pp 65–76

36. Nine MSZ, Azad MAK, Abdullah S, Rahman RM (2013) Fuzzy
logic based dynamic load balancing in virtualized data centers. In:
Fuzzy systems (FUZZ), 2013 IEEE international conference. IEEE,
pp 1–7

37. Velde, V. and Rama, B. An advanced algorithm for load balancing
in cloud computing using fuzzy technique, In Intelligent Computing
and Control Systems (ICICCS), International Conference, IEEE,
2017, pp. 1042–1047

38. Kwon, S. and Choi, J. An agent-based adaptive monitoring system,
In Pacific rim international workshop on multi-agents, Springer,
Berlin, Heidelberg, 2006, pp. 672–677

39. Brooks, C., Tierney, B. and Johnston, W. JAVA agents for distrib-
uted system management, LBNL Report, 1997

40. Kim ST, Park HJ, Kim YC (2001) The load monitoring of web
server using mobile agent, in Info-tech and Info-net, 2001,
Proceedings. ICII 2001-Beijing. International Conferences on,
IEEE 5:89–94

41. Legrand I, Newman H, Voicu R, Cirstoiu C, Grigoras C, Dobre C,
Muraru A, Costan A, Dediu M, Stratan C (2009) MonALISA: an
agent based, dynamic service system to monitor, control and opti-
mize distributed systems. Comput Phys Commun 180(12):2472–
2498

Moazam Ali obtained his BCS in Computer Science in year 2007 from
the Islamia College, University of Peshawar and, MS-IT in Computer
Networks in year 2012 from the Institute of Management Sciences,
Peshawar. Currently, he is pursuing his PhD in Distributed Systems in
the Department of Aerospace and Software Engineering (Informatics),
Gyeongsang National University, Jinju, South Korea.

Susmit Bagchi has received B.Sc. (Honours) from Calcutta University in
1993, B. E. in Electronics Engineering in 1997 from Nagpur University,
M.E. in Electronics and Telecommunication Engineering in 1999 from
Bengal Engineering and Science University (presently IIEST). He has
obtained Ph.D. (Engineering) in Information Technology in 2008 from
Bengal Engineering and Science University. Currently, he is Associate
Professor in Department of Aerospace and Software Engineering
(Informatics), Gyeongsang National University, Jinju, South Korea. His
research interests are in Distributed Computing Systems and Analysis.

Publisher’s note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Design and analysis of distributed load management: Mobile agent based probabilistic model and fuzzy... 3489

https://doi.org/10.1007/s10489-018-1191-5
https://doi.org/10.1007/s10489-018-1194-2
https://doi.org/10.1007/s10489-018-1194-2

www.manaraa.com

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.

	Design and analysis of distributed load management: Mobile agent based probabilistic model and fuzzy integrated model
	Abstract
	Introduction
	Motivation

	Related work
	Designing monitoring agent
	ADM and fuzzy module hybrid
	Agent-based load estimation model

	Designing fuzzy load balancer
	Monitoring and decision algorithms
	Agent based monitoring algorithm
	Agent based decision algorithms
	Decision algorithm for Zone_1
	Decision algorithm for Zone_2
	Decision algorithm for Zone_3
	Fuzzy based decision algorithm

	Implementation environment
	Agent deployment and architecture

	Experimental evaluations
	Evaluation of agent-based monitoring model
	Set 1: Agent-based monitoring model employing heavy load and cpu stress
	Set 2: Agent-based monitoring model employing heavy load and VOD
	Set 3: Agent-based monitoring model employing heavy load, VOD and CPU stress
	Set 4: Agent-based monitoring model employing heavy load, VOD and CPU stress
	Set 5: Agent-based monitoring model employing heavy load and VOD
	Mobile agent migration latency

	Integrated evaluation
	Set 1: Fuzzy integrated model employing heavy load and CPU stress
	Set 2: Fuzzy integrated model employing heavy load and VOD
	Set 3: Fuzzy integrated model employing heavy load, VOD and CPU stress
	Set 4: Fuzzy integrated model employing heavy load, VOD and CPU stress
	Set 5: Fuzzy integrated model employing heavy load and VOD

	Comparative analysis
	Qualitative analysis of MABMS and FIM models
	Quantitative analysis of MABMS and FIM models
	Comparison of decision logic executions
	Qualitative analysis with other models
	Quantitative analysis with other models

	Conclusion
	References

